Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper introduces a novel wafer-edge quality inspection method based on analysis of curved-edge diffractive fringe patterns, which occur when light is incident and diffracts around the wafer edge. The proposed method aims to identify various defect modes at the wafer edges, including particles, chipping, scratches, thin-film deposition, and hybrid defect cases. The diffraction patterns formed behind the wafer edge are influenced by various factors, including the edge geometry, topography, and the presence of defects. In this study, edge diffractive fringe patterns were obtained from two approaches: (1) a single photodiode collected curved-edge interferometric fringe patterns by scanning the wafer edge and (2) an imaging device coupled with an objective lens captured the fringe image. The first approach allowed the wafer apex characterization, while the second approach enabled simultaneous localization and characterization of wafer quality along two bevels and apex directions. The collected fringe patterns were analyzed by both statistical feature extraction and wavelet transform; corresponding features were also evaluated through logarithm approximation. In sum, both proposed wafer-edge inspection methods can effectively characterize various wafer-edge defect modes. Their potential lies in their applicability to online wafer metrology and inspection applications, thereby contributing to the advancement of wafer manufacturing processes.more » « less
-
This paper presents a novel nondestructive testing system, magneto-eddy-current sensor (MECS), to enable surface profiling of dissimilar materials by combining magnetic sensing for ferromagnetic materials and eddy-current sensing for nonferromagnetic materials. The interactions between an electromagnetic field and nonferromagnetic surface and between a magnetic field and ferromagnetic surface were measured by the MECS. The MECS consists of a conic neodymium magnet and a copper coil wound around the magnet. Aluminum and steel surfaces bonded together were prepared to test nondestructive surface profiling of dissimilar materials by the MECS. The interactions between an electromagnetic field and aluminum surface were characterized by monitoring the impedance of the coil, and the interactions between a magnetic field and steel surface were characterized by using a force sensor attached to the neodymium magnet. The magnetic and electromagnetic effects were numerically analyzed by the finite element model. The developed MECS showed the following performance: measurement spot size 5 mm and 10 mm, dynamic measurement bandwidth (eddy-current sensing 1 kHz and magnetic sensing 200 Hz), measuring range 25 mm and 17 mm, polynomial fitting error 0.51% and 0.50%, and resolution 0.655 µm and 0.782 µm for nonferromagnetic and ferromagnetic surface profiling, respectively. This technique was also applied to surface profiling and inspection of the rivet joining sheet materials. The results showed that the MECS is capable of nondestructively monitoring and determining the riveting quality in a fast, large-area, low-cost, convenient manner.more » « less
-
In smart manufacturing, semiconductors play an indispensable role in collecting, processing, and analyzing data, ultimately enabling more agile and productive operations. Given the foundational importance of wafers, the purity of a wafer is essential to maintain the integrity of the overall semiconductor fabrication. This study proposes a novel automated visual inspection (AVI) framework for scrutinizing semiconductor wafers from scratch, capable of identifying defective wafers and pinpointing the location of defects through autonomous data annotation. Initially, this proposed methodology leveraged a texture analysis method known as gray-level co-occurrence matrix (GLCM) that categorized wafer images—captured via a stroboscopic imaging system—into distinct scenarios for high- and low-resolution wafer images. GLCM approaches further allowed for a complete separation of low-resolution wafer images into defective and normal wafer images, as well as the extraction of defect images from defective low-resolution wafer images, which were used for training a convolutional neural network (CNN) model. Consequently, the CNN model excelled in localizing defects on defective low-resolution wafer images, achieving an F1 score—the harmonic mean of precision and recall metrics—exceeding 90.1%. In high-resolution wafer images, a background subtraction technique represented defects as clusters of white points. The quantity of these white points determined the defectiveness and pinpointed locations of defects on high-resolution wafer images. Lastly, the CNN implementation further enhanced performance, robustness, and consistency irrespective of variations in the ratio of white point clusters. This technique demonstrated accuracy in localizing defects on high-resolution wafer images, yielding an F1 score greater than 99.3%.more » « less
-
The preparation of defect-free wafers serves as a critical stage prior to fabrication of devices or chips as it is not possible to pattern any devices or chips on a defected wafer. Throughout the semiconductor process, various defects are introduced, including random particles that necessitate accurate identification and control. In order to effectively inspect particles on wafers, this study introduces a wafer particle inspection technique that utilizes computer vision based on HSV (hue-saturation-value) color space transformation models to detect and to classify different particles by types. Artificially generated particle images based on their color properties were used to verify HSV color space models of each particle and to demonstrate how the proposed method efficiently classifies particles by their types with minimum crosstalk. A high-resolution microscope consisting of an imaging system, illumination system, and spectrometer was developed for the experimental validation. Micrometer-scale particles of three different types were randomly placed on the wafers, and the images were collected under the exposed white light illumination. The obtained images were analyzed and segmented by particle types based on pre-developed HSV color space models specified for each particle type. By employing the proposed method, the presence of particles on wafers can be accurately detected and classified. It is expected to inspect and classify various wafer particles in the defect binning process.more » « less
An official website of the United States government
